POWERS AND ROOTS

7.1 EXPONENTIAL NOTATIONS (Positive powers only)

If number 3 is multiplied to itself 4 times, we get: $3 \times 3 \times 3 \times 3$.

The product of $3 \times 3 \times 3 \times 3$ can be written as 3^4 .

 3^4 is called the exponential notation for the product of $3 \times 3 \times 3 \times 3$.

In the product $3 \times 3 \times 3 \times 3 = 3^4$, the repeating number 3 is called the base, whereas 4 is called the exponent (or *index* or *power*).

Similarly: (i) in 2^3 , base = 2 and exponent (power) = 3

(ii) in $(-3)^4$, base = -3 and exponent (power) = 4

(iii) in $x^{\frac{2}{3}}$, base = x and exponent (index) = $\frac{2}{3}$ and so on.

In general, 34 is read as: 3 raised to the power 4 or the fourth power of three.

1.
$$(-3)^4 = -3 \times -3 \times -3 \times -3 = 81$$
 and $-(3)^4 = -(3 \times 3 \times 3 \times 3) = -81$

2. For any non-zero number a, $a^0 = 1$

i.e.
$$2^0 = 1$$
, $(-5)^0 = 1$, $\left(\frac{2}{3}\right)^0 = 1$ and so on.

3. For any number a, $a^1 = a$

i.e.
$$(-2)^1 = -2$$
, $5^1 = 5$, $\left(\frac{2}{3}\right)^1 = \frac{2}{3}$ and so on.

Example 1:

Evaluate: (i) $3^2 \times 2^4$

(ii) $3^2 \times 2^0$

Solution:

(i) $3^2 \times 2^4 = 3 \times 3 \times 2 \times 2 \times 2 \times 2 = 144$

(Ans.)

(ii) $3^2 \times 2^0 = 3 \times 3 \times 2^0 = 9 \times 1 = 9$

(Ans.)

Example 2:

Simplify and express the result in exponential form:

(i)
$$\frac{5\times2\times3^3}{3\times3\times2\times5^3}$$

(ii)
$$\frac{3^4 \times 2^4}{2^3 \times 3^6}$$

Solution:

(i)
$$\frac{5 \times 2 \times 3^3}{3 \times 3 \times 2 \times 5^3} = \frac{5 \times 2 \times 3 \times 3 \times 3}{3 \times 3 \times 2 \times 5 \times 5 \times 5} = \frac{3}{5 \times 5} = \frac{3}{5^2}$$
 (Ans.)

(ii)
$$\frac{3^4 \times 2^4}{2^3 \times 3^6} = \frac{3 \times 3 \times 3 \times 3 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3} = \frac{2}{3 \times 3} = \frac{2}{3^2}$$
 (Ans.)

Example 3:

Evaluate: $6a^2b^3$ for a=3 and b=2.

Solution:

$$6a^2b^3 = 6 \times a \times a \times b \times b \times b$$

$$= 6 \times 3 \times 3 \times 2 \times 2 \times 2 = 432$$
(Ans.)

The following table will make it more clear :

Number	As a product of prime factors	In the exponential form
8 243 72 630 9000	$2 \times 2 \times 2$ $3 \times 3 \times 3 \times 3 \times 3$ $2 \times 2 \times 2 \times 3 \times 3$ $2 \times 3 \times 3 \times 5 \times 7$ $2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 5$	$ \begin{array}{c} 2^{3} \\ 3^{5} \\ 2^{3} \times 3^{2} \\ 2^{1} \times 3^{2} \times 5^{1} \times 7^{1} \\ 2^{3} \times 3^{2} \times 5^{3} \end{array} $

EXERCISE 7(A)

- Fill in the blanks: 1.
 - In expression xy, base = and exponent =
 - In expression $(-6)^4$, power = and base =
 - If base = 8 and exponent = 5, then expression =
 - If base = -2 and power = 10, then expression =
- Evaluate the following: 2.
 - (i) $5^0 = \dots$

(ii) $-5^0 = \dots$

(iii) $-4^3 = \dots$

- (iv) $(-1)^7 = \dots$
- (v) If x = 1, then $15 x^7 = \dots$
- (vi) If y = 3, then $y^3 = ...$
- (vii) If a = -2, then $4a^3 = \dots$
- (viii) If $3^a = 1$, then a =

- Find the value of: 3.
- (ii) $(-10)^3$
- (iii) 10⁴
- (iv) 7^4

- Find the value of: 4.
 - (i) $\left(\frac{2}{3}\right)^4$
- (ii) $\left(-\frac{1}{2}\right)^6$
- (iii) $\left(-\frac{2}{7}\right)^3$ (iv) $\left(\frac{3}{5}\right)^4$
- Simplify and express the result in exponential notation : 5.
- (ii) $\frac{3^5 \times 2^2}{3 \times 3 \times 2}$
- $\frac{5\times5\times5^5\times3^2}{3\times3\times5^2}$
- (iv) $\frac{2^3 \times 3^4 \times 5^2}{5^4 \times 3^2 \times 2}$ (v) $\frac{5^6 \times 11^3}{11^5 \times 5 \times 5}$
- Evaluate: 6.
 - (i) $\frac{(-3)^3 \times (-2)^7}{(-2)^5}$ (ii) $8^5 \div 8^2$
- (iii) $(-5)^7 \div 5^4$

7. Evaluate:

(i)
$$a^3$$
 for $a = 3$

(iii)
$$2x^3$$
 for $x = 5$

(v)
$$(4a)^3$$
 for $a = -1$

(vii)
$$3x^3y^4$$
 for $x = 1$ and $y = -1$

(ix)
$$a^3 + b^3$$
 for $a = 1$ and $b = 2$

(ii)
$$4b^3$$
 for $b = 4$

(iv)
$$(3x)^2$$
 for $x = 1$

(vi)
$$2a^3b^2$$
 for $a = 2$ and $b = 3$

(viii)
$$ab^3$$
 for $a = 2$ and $b = -3$

(x)
$$a^3 + b^3 - 3ab$$
 for $a = 2$ and $b = 1$

8. Express each of the following numbers in the exponential form of its prime factors :

- (i) 16
- (ii) 81
- (iii) 144
- (iv) 2700

(v) 3000

- (vi) 6075
- (vii) 4500

7.2 PROPERTIES OF EXPONENTS

Property 1 (Product Law):

$$a^m \times a^n = a^{m+n}$$

For example:

(i)
$$a^3 \times a^2 = a^{3+2} = a^5$$

(ii)
$$3^7 \times 3^3 = 3^{7+3} = 3^{10}$$

(iii)
$$(-5)^4 \times (-5)^2 = (-5)^6$$

(iv)
$$\binom{3}{4}^6 \times \left(\frac{3}{4}\right)^5 = \left(\frac{3}{4}\right)^{11}$$
 and so on.

Property 2 (Quotient Law):

$$\frac{a^m}{a^n} = a^{m-n}, \text{ if } m > n$$

and

$$\frac{a^{m}}{a^{n}} = \frac{1}{a^{n-m}}, \text{ if } m < n \text{ and } a \neq 0.$$

For example:

(i)
$$\frac{a^5}{a^3} = a^{5-3} = a^2$$

(ii)
$$\frac{a^3}{a^5} = \frac{1}{a^{5-3}} = \frac{1}{a^2}$$

(iii)
$$\frac{3^7}{3^4} = 3^{7-4} = 3^3$$

(iv)
$$\frac{3^4}{3^7} = \frac{1}{3^{7-4}} = \frac{1}{3^3}$$
 and so on.

For both the properties discussed above, the base must be the same.

Property 3 (Power Law):

$$(a^m)^n = a^m \times n$$

For example:

(i)
$$(a^5)^3 = a^5 \times 3 = a^{15}$$

(ii)
$$(3^{-2})^5 = 3^{-2 \times 5} = 3^{-10}$$
 and so on.

Also, (i) $(a^3 \times b^4)^5 = a^{3 \times 5} \times b^{4 \times 5} = a^{15} \times b^{20}$

(ii)
$$\left(\frac{3^2}{2^4}\right)^3 = \frac{3^{2\times3}}{2^{4\times3}} = \frac{3^6}{2^{12}}$$
 and so on.

$$(a \times b)^5 = a^5 \times b^5$$
, but $(a + b)^5 \neq a^5 + b^5$ and $(a - b)^5 \neq a^5 - b^5$.

Example 4:

Using the properties of exponents, evaluate :(i)
$$\frac{2^3 \times 2^7}{2^6}$$
 (ii) $\frac{(-2)^3 \times 2^7}{2^6}$ (iii) $\frac{3^8 \times 4^3}{3^6 \times 4^4}$

Solution: (i)
$$\frac{2^3 \times 2^7}{2^6} = \frac{2^{3+7}}{2^6} = \frac{2^{10}}{2^6}$$

= $2^{10-6} = 2^4 = 2 \times 2 \times 2 \times 2 = 16$ (Ans.)

(ii)
$$\frac{(-2)^3 \times 2^7}{2^6} = \frac{-2^3 \times 2^7}{2^6}$$

$$[(-2)^3 = -2 \times -2 \times -2 = -2 \times 2 \times 2 = -2^3]$$

$$= \frac{-2^{10}}{2^6} = -2^{10-6} = -2^4 = -2 \times 2 \times 2 \times 2 = -16 \quad \text{(Ans.)}$$

(iii)
$$\frac{3^8 \times 4^3}{3^6 \times 4^4} = \frac{3^{8-6}}{4^{4-3}} = \frac{3^2}{4^1} = \frac{3 \times 3}{4} = \frac{9}{4} = 2\frac{1}{4}$$
 (Ans.)

EXERCISE 7(B)

Fill in the blanks: 1.

(i)
$$x^a \times x^b = \dots$$
 (ii) $a^3 \times a^8 = \dots$

(iii)
$$a^5 \times b^3 = \dots$$

(iv)
$$2^3 \times 3^2 = \dots$$

(v)
$$\frac{5^7}{5^4} = \dots$$

(iv)
$$2^3 \times 3^2 = \dots$$
 (v) $\frac{5^7}{5^4} = \dots$ (vi) $\frac{5^3}{5^5} = \dots$

(vii)
$$\frac{8^6}{8^4} = \dots$$

(viii)
$$(a^3 \times b^4)^2 = \dots$$

(vii)
$$\frac{8^6}{8^4} = \dots$$
 (viii) $(a^3 \times b^4)^2 = \dots$ (ix) $\left(\frac{3^0}{2^2}\right)^2 = \dots$

(x)
$$(4^2 \times 5^0)^3 = \dots$$

Using the properties of exponents, evaluate : 2.

(i)
$$\frac{3^4 \times 3^9}{3^{15}}$$

(i)
$$\frac{3^4 \times 3^9}{3^{15}}$$
 (ii) $\frac{4^6 \times 4^3}{4^5 \times 4^2}$

(iii)
$$\frac{(-2)^6 \times (-2)^5}{(-2)^7}$$

(iv)
$$\frac{2^3 \times 5^2}{5^4}$$
 (v) $\frac{5^2 \times 3^5}{3^3}$

(v)
$$\frac{5^2 \times 3^5}{3^3}$$

Evaluate: 3.

(i)
$$\frac{(-3)^3 \times (-2)^4}{(-2)^2}$$

(ii)
$$\frac{(2^3 \times 5^4)^2}{2^4 \times 5^5}$$

(iii)
$$(-5)^4 \div 5^4$$

(iv)
$$(-3)^7 \div (-3)^6$$

Evaluate: 4.

(i)
$$2^3 - 3^2 + 4^0$$

(ii)
$$5^2 + 2^2 - 3^3 + 8^0$$

Evaluate: 5.

(i)
$$2x^2$$
, if $x = 3$

(ii)
$$x^3y^2$$
, if $x = 2$ and $y = 3$

(iii)
$$x^2 + y^3$$
, if $x = 1$ and $y = 2$

(iv)
$$3x^2y - 2xy^2$$
, if $x = 5$ and $y = 6$

(iv)
$$3x^2y - 2xy^2 = 3 \times 5^2 \times 6 - 2 \times 5 \times 6^2$$

= $3 \times 25 \times 6 - 10 \times 36$
= $450 - 360 = 90$

7.3 SQUARES

When a number is multiplied by itself, the product obtained is called the square of that number.

For example:

(i) Since
$$4 \times 4 = 16$$
,

$$\therefore$$
 16 is square of 4, and we write : $(4)^2 = 16$

(ii) Since
$$-2 \times -2 = 4$$
,

$$\therefore$$
 4 is square of -2 and we write : $(-2)^2 = 4$

(iii) Since
$$\frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$$
,

$$\therefore \frac{4}{9} \text{ is square of } \frac{2}{3} \text{ which is written as } \left(\frac{2}{3}\right)^2 = \frac{4}{9}$$

(iv) Since
$$0.2 \times 0.2 = 0.04$$

$$\therefore$$
 0.04 is square of 0.2 i.e. $(0.2)^2 = 0.04$ and so on.

Whether the number is positive or negative, its square is always positive.

e.g. (i)
$$(3)^2 = 3 \times 3 = 9$$

(ii)
$$(-3)^2 = -3 \times -3 = 9$$

(iii)
$$(-5)^2 = -5 \times -5 = 25$$

More examples :

(i) Square of
$$0 = 0^2 = 0$$

(ii) Square of
$$5 = 5^2 = 5 \times 5 = 25$$

(iii) Square of
$$-\frac{2}{5} = \left(-\frac{2}{5}\right)^2 = \left(-\frac{2}{5}\right) \times \left(-\frac{2}{5}\right) = \frac{4}{25}$$

(iv) Square of
$$2\frac{3}{7} = \left(2\frac{3}{7}\right)^2 = \left(\frac{17}{7}\right)^2 = \frac{17}{7} \times \frac{17}{7} = \frac{289}{49} = 5\frac{44}{49}$$

(v) Square of
$$-3\frac{1}{2} = \left(-3\frac{1}{2}\right)^2 = \left(-\frac{7}{2}\right)^2 = \left(-\frac{7}{2}\right) \times \left(-\frac{7}{2}\right) = \frac{49}{4} = 12\frac{1}{4}$$

(vi) Square of
$$-2.3 = (-2.3)^2 = -2.3 \times -2.3 = 5.29$$
 and so on.

EXERCISE 7(C)

- 1. Find the squares of first five natural numbers.
- 2. Find the squares of first six even natural numbers.
- 3. Find the squares of first four odd natural numbers.
- 4. Find the squares of first five prime numbers.
- 5. Find the squares of :
 - (i) 9

- (ii) $\frac{2}{5}$
- (iii) $1\frac{2}{7}$
- (iv) $2\frac{3}{4}$

- 6. Find the squares of:
 - (i) -3

- (ii) $-\frac{2}{3}$
- (iii) $-1\frac{2}{5}$
- (iv) $-2\frac{1}{4}$

- 7. Find the squares of:
 - (i) 2·5
- (ii) 0.6
- (iii) 0·23

- (iv) 0.02
- (v) 1.6
- (vi) -0.8

7.4 SQUARE ROOT

The square root of a given number, is that number which when multiplied by itself, gives the given number.

For example:

- (i) Square root of 16 = 4, as 4 multiplied by itself = $4 \times 4 = 16$.
- (ii) Square root of 25 = 5, as 5 multiplied by itself = $5 \times 5 = 25$ and so on.

7.5 SYMBOL FOR SQUARE ROOT

The square root is denoted by the radical sign $\sqrt{\ }$.

For example:

- (i) $\sqrt{9}$ means square root of 9; (ii) Square root of $\frac{16}{25} = \sqrt{\frac{16}{25}}$
- (iii) $\sqrt{0.16}$ means square root of 0.16 and so on.

7.6 METHODS OF FINDING THE SQUARE ROOT

(a) To find the square root of a number (whole number) using the prime factor method:

Steps:

- 1. Express the given number as the product of its prime factors.
- 2. Make groups, each consisting of two identical factors obtained in step (1).
- 3. Take one factor from each group and multiply them together.
- 4. The product so obtained is the square root of the given number.

Example 5:

Find the square root of: (i) 144 (ii) 225 (iii) 900

Solution:

- (i) Since $144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$
 - $\therefore \text{ Square root of } 144 = \sqrt{144}$

=
$$\sqrt{(2\times2)\times(2\times2)\times(3\times3)}$$

= 2 × 2 × 3 [Taking one factor from each pair]

(Ans.)

OR, directly, as
$$144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$$

= $(2 \times 2) \times (2 \times 2) \times (3 \times 3)$

= 12

$$\therefore \text{ Square root of } 144 = 2 \times 2 \times 3 = 12 \tag{Ans.}$$

(ii) :
$$225 = 3 \times 3 \times 5 \times 5$$

= $(3 \times 3) \times (5 \times 5)$

$$\therefore \quad \text{Square root of 225} = 3 \times 5 = 15 \tag{Ans.}$$

(iii)
$$= \sqrt{2 \times 2 \times 3 \times 3 \times 5 \times 5}$$
$$\sqrt{900} = \sqrt{2 \times 2 \times 3 \times 3 \times 5 \times 5}$$
$$= 2 \times 3 \times 5 = 30$$
(Ans.)

(b) To find the square root of a number in the fraction form :

The square root of a fraction is found by getting the square roots of its numerator and denominator separately.

Square root of a fraction =
$$\frac{\text{Square root of its numerator}}{\text{Square root of its denominator}} \quad i.e. \quad \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

For example:

(i)
$$\sqrt{\frac{225}{49}} = \sqrt{\frac{3 \times 3 \times 5 \times 5}{7 \times 7}} = \frac{3 \times 5}{7} = \frac{15}{7} = 2\frac{1}{7}$$

(ii)
$$\sqrt{4.41} = \sqrt{\frac{441}{100}} = \sqrt{\frac{3 \times 3 \times 7 \times 7}{2 \times 2 \times 5 \times 5}} = \frac{3 \times 7}{2 \times 5} = \frac{21}{10} = 2.1$$

(c) To find the square root of a number in index form :

In general, the square root of a given number in its index form can be obtained only when its index (power) is an even number *i.e.* the given number is of the form 2¹⁰, 3⁸, 5⁴, etc.

Method: Keeping the base same, divide index (power) by 2.

Example 6:

Find the square root of : (i) 2^8 (ii) 3^6 (iii) $2^4 \times 5^2$

Solution:

(i) 28 shows that the power of 2 is 8, and half of 8 is 4.

: Square root of
$$2^8 = 2^4 = 2 \times 2 \times 2 \times 2 = 16$$
 (Ans.)

OR, directly,
$$\sqrt{2^8} = 2^4 = 2 \times 2 \times 2 \times 2 = 16$$
 (Ans.)

Similarly:

(ii)
$$\sqrt{3^6} = 3^3 = 3 \times 3 \times 3 = 27$$
 (Ans.)

(iii)
$$\sqrt{2^4 \times 5^2} = 2^2 \times 5^1 = 2 \times 2 \times 5 = 20$$
 (Ans.)

More examples :

(i)
$$\sqrt{44 \times 22 \times 8} = \sqrt{(2 \times 2 \times 11) \times (2 \times 11) \times (2 \times 2 \times 2)}$$

= $\sqrt{(2 \times 2) \times (11 \times 11) \times (2 \times 2) \times (2 \times 2)}$
= $2 \times 11 \times 2 \times 2 = 88$

(ii)
$$\sqrt{\frac{3^2 \times 36}{5^4}} = \sqrt{\frac{3^2 \times (2 \times 2) \times (3 \times 3)}{5^4}} = \frac{3^1 \times 2 \times 3}{5^2} = \frac{18}{25}$$
 and so on.

EXERCISE 7(D)

- 1. Fill in the blanks:
 - (i) The square of 7 is $(7)^a$, then $a = \dots$
 - (ii) The square of b is 49, then b =

- (iii) If x is positive and $x^2 = 121$, then $x = \dots$
- (iv) If the square of 0.8 = 0.64, then the square root of $0.64 = \dots$
- Find the square root of: 2.
 - 64
- 144 (ii)

- 225 (iii)
- 324 (iv)

- 441
- 484 (vi)
- (vii) 625
- (viii) 729

- Find the square root of: 3.

(iii)

- (iv) $1\frac{7}{9}$

- Find the square root of: 4.
 - (i) 4 × 49

9 x 81

100 × 16 (iii)

- (iv) $1 \times 25 \times 36$
- $36 \times 64 \times 81$
- 81×121 (vi) 225

- Find the square root of: 5.
 - 98 × 8

- 72×18
- $8 \times 25 \times 200$

- Evaluate: 6.
 - √144×4 (i)
- √25×400
- √100×36 (iii)

- $\sqrt{9\times81\times100}$ (iv)
- $\sqrt{16 \times 25 \times 4 \times 64}$
- $\sqrt{81\times64\times4}$ (vi)

- (vii) $\sqrt{2^2 \times 4^2 \times 3^2}$
- $\sqrt{3^6 \times 5^4 \times 2^8}$ (viii)
- 196×100

- (x) $\sqrt{\frac{2^8 \times 3^2}{5^2}}$
- (xi) $\sqrt{\frac{1^2 \times 25}{4^2}}$
- 81×225

- Evaluate: 7.
 - $\sqrt{25} + \sqrt{16}$
- (ii) $\sqrt{49} \sqrt{36}$
- $\sqrt{25}$ × $\sqrt{16}$ (iii)

- $\sqrt{144} \div \sqrt{16}$ (iv)
- (v) $\sqrt{49} \sqrt{16} + \sqrt{4}$

CUBES

When a number is multiplied by itself three times, the product obtained is called the cube of that number.

For example:

- (i)
- Since $4 \times 4 \times 4 = 64$, \therefore 64 is the cube of 4, and we write : $(4)^3 = 64$
- (ii)
- Since $-2 \times -2 \times -2 = -8$, \therefore -8 is the cube of -2, and we write : $(-2)^3 = -8$
- (iii) Since $\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{8}{27}$, $\therefore \frac{8}{27}$ is the cube of $\frac{2}{3}$, and we write $: \left(\frac{2}{3}\right)^3 = \frac{8}{27}$
- (iv) Since $0.2 \times 0.2 \times 0.2 = 0.008$,
 - 0.008 is cube of 0.2, and we write : $(0.2)^3 = 0.008$

- 1. The cube of a positive number is always positive. e.g., $(3)^3 = 3 \times 3 \times 3 = 27$, $(5)^3 = 5 \times 5 \times 5 = 125$ and so on.
- 2. The cube of a negative number is always negative. e.g., $(-3)^3 = -3 \times -3 \times -3 = -27$, $(-5)^3 = -5 \times -5 \times -5 = -125$ and so on.
- 3. $-a^3 = (-a)^3$ i.e., $-2^3 = (-2)^3$, $-5^3 = (-5)^3$ and so on.

More examples:

- (i) The cube of $0 = 0^3 = 0 \times 0 \times 0 = 0$
- (ii) The cube of $6 = 6^3 = 6 \times 6 \times 6 = 216$
- (iii) The cube of $-\frac{2}{3} = \left(-\frac{2}{3}\right)^3 = -\frac{2}{3} \times -\frac{2}{3} \times -\frac{2}{3} = -\frac{8}{27}$
- (iv) The cube of $2\frac{2}{3} = \left(\frac{8}{3}\right)^3 = \frac{8}{3} \times \frac{8}{3} \times \frac{8}{3} = \frac{512}{27} = 18\frac{26}{27}$
- (v) The cube of $-3\frac{1}{2} = \left(-3\frac{1}{2}\right)^3 = \left(-\frac{7}{2}\right)^3 = -\frac{7}{2} \times -\frac{7}{2} \times -\frac{7}{2} = -\frac{343}{8} = -42\frac{7}{8}$
- (vi) The cube of $1.2 = (1.2)^3 = 1.2 \times 1.2 \times 1.2 = 1.728$ and so on.

EXERCISE 7(E)

- 1. Find the cubes of the first three whole numbers.
- 2. Find the cubes of each natural number between 3 and 8
- 3. Find the cubes of each integer between 3 and 3.
- 4. Find the cubes of each integer from -5 to -2.
- 5. Find the cubes of the even natural numbers between 4 and 10.
- 6. Find the cubes of the odd natural numbers from 3 to 9.
- 7. Find the cubes of:
 - (i) $\frac{4}{5}$
- (ii) $2\frac{3}{4}$

- (iii) $2\frac{1}{2}$
- (iv) $3\frac{1}{3}$

- 8. Find the cubes of:
 - (i) $-\frac{2}{5}$
- (ii) $-1\frac{2}{5}$
- (iii) $-2\frac{1}{4}$
- (iv) $-3\frac{1}{3}$

- 9. Find the cubes of :
 - (i) 0.1
- (ii) 0.5

- (iii) 1.5
- (iv) 0.02

- (v) 0.6
- (vi) 0.08
- (vii) 0.14
- (viii) 1.6

7.8 CUBE ROOT

The *cube root* of a given number, is that number which when multipled by itself three times, gives the given number.

For example:

- (i) The cube root of 64 = 4, as $4 \times 4 \times 4 = 64$
- (ii) The cube root of 125 = 5, as $5 \times 5 \times 5 = 125$

(iii) The cube root of
$$\frac{8}{27} = \frac{2}{3}$$
, as $\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{8}{27}$

(iv) The cube root of
$$-\frac{1}{8} = -\frac{1}{2}$$
, as $-\frac{1}{2} \times -\frac{1}{2} \times -\frac{1}{2} = -\frac{1}{8}$

(v) The cube root of 0.027 = 0.3, as $0.3 \times 0.3 \times 0.3 = 0.027$ and so on.

7.9 SYMBOL FOR THE CUBE ROOT

The symbol for cube root is ³√.

That is, the cube root of 243 is written as : $\sqrt[3]{243}$ or $(243)^{\frac{1}{3}}$

Thus:

(i) The cube root of
$$64 = 4$$
 $\Rightarrow \sqrt[3]{64} = 4$

(ii) The cube root of
$$\frac{8}{27} = \frac{2}{3}$$
 \Rightarrow $\sqrt[3]{\frac{8}{27}} = \frac{2}{3}$

(iii) The cube root of
$$-\frac{1}{8} = -\frac{1}{2} \implies \sqrt[3]{-\frac{1}{8}} = -\frac{1}{2}$$

(iv) The cube root of $0.027 = 0.3 \Rightarrow \sqrt[3]{0.027} = 0.3$ and so on.

METHODS OF FINDING THE CUBE ROOT

(a) To find the cube root of a number (integer) using the factor method :

(a) To find the cube root of a number (integer) using the last of the Steps:

1. Express the given number as the product of its prime factors.

- 2. Make groups [out of the prime factors obtained in step (1)], each consisting of three identical factors.
- 3. Take one factor from each group and multiply them together.
- 4. The product so obtained is the cube root of the given number.

Example 7:

Find the cube root of: (i) 64 (ii) 216 (iii) 729

Solution :

The cube root of a positive number is always positive.

Downloaded from https:// www.studiestoday.com

(ii) Since,
$$216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$$

 $= (2 \times 2 \times 2) \times (3 \times 3 \times 3)$
 \therefore The cube root of 216 = $2 \times 3 = 6$ (Ans.)
 Since, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$
 $= (3 \times 3 \times 3) \times (3 \times 3 \times 3)$
 \therefore The cube root of $729 = 3 \times 3 = 9$ (Ans.)

Example 8:

Find the cube root of : (i) -64 (ii) -3375

Solution:

The cube root of a negative number is always negative.

(b) To find the cube root of a number in the fraction form:

The cube root of a fraction = $\frac{\text{The cube root of its numerator}}{\text{The cube root of its denominator}}$

For example:

(i) The cube root of
$$\frac{8}{27} = \frac{\text{Cube root of 8}}{\text{Cube root of 27}}$$

$$= \frac{2}{3}$$
i.e. $\sqrt[3]{\frac{8}{27}} = \frac{\sqrt[3]{8}}{\sqrt[3]{27}} = \frac{\sqrt[3]{2 \times 2 \times 2}}{\sqrt[3]{3 \times 3 \times 3}} = \frac{2}{3}$
(ii) Since $0.729 = \frac{729}{1000} = \frac{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 5 \times 5 \times 5} = \frac{(3 \times 3 \times 3) \times (3 \times 3 \times 3)}{(2 \times 2 \times 2) \times (5 \times 5 \times 5)}$

$$\therefore \text{ The cube root of } 0.729 = \frac{3 \times 3}{2 \times 5} = \frac{9}{10} = \mathbf{0.9}$$
(iii) Since $-0.027 = -\frac{27}{1000} = -\frac{3 \times 3 \times 3}{2 \times 2 \times 2 \times 5 \times 5 \times 5}$
The cube root of $-0.027 = -\frac{3}{2 \times 5} = -\frac{3}{10} = -0.3$

(c) To find the cube root of a number in index form :

In general, the cube root of a given number, in the index form, is obtained only when its index (power) is exactly divisible by 3.

Method: Keeping the base same, divide the index (power) by 3.

Example 9:

Find the cube root of: (i) 26 (ii) 39 (iii) 53

Solution:

(i) The cube root of
$$2^6 = 2^{6 \div 3}$$

= $2^2 = 2 \times 2 = 4$ (Ans.)

i.e.
$$\sqrt[3]{2^6} = 2^{6 \div 3} = 2^2 = 2 \times 2 = 4$$
 (Ans.)

(ii) The cube root of
$$3^9 = 3^{9 \div 3}$$

= $3^3 = 3 \times 3 \times 3 = 27$ (Ans.)

(iii) The cube root of
$$5^3 = 5^{3 \div 3}$$

= $5^1 = 5$ (Ans.)

Example 10:

Find the cube root of : (i) $2^6 \times 3^3$ (ii) $5^6 \times 2^9$

Solution:

Method: Divide the power (index) of each number used by 3.

(i) The cube root of
$$2^6 \times 3^3 = 2^{6 \div 3} \times 3^{3 \div 3}$$

= $2^2 \times 3^1 = 2 \times 2 \times 3 = 12$ (Ans.)

(ii) The cube root of
$$5^6 \times 2^9 = 5^{6 \div 3} \times 2^{9 \div 3}$$

= $5^2 \times 2^3 = 5 \times 5 \times 2 \times 2 \times 2 = 200$ (Ans.)

OR, directly,

(i)
$$\sqrt[3]{2^6 \times 3^3} = 2^2 \times 3$$
 Explicitly Dividing each power by 3 (Ans.)

(ii)
$$\sqrt[3]{5^6 \times 2^9} = 5^2 \times 2^3$$

= $5 \times 5 \times 2 \times 2 \times 2 = 200$ (Ans.)

The cube root of $a^3b^3 = ab$ and the cube root of $\frac{a^3}{b^3} = \frac{a}{b}$, but the cube root of $a^3 + b^3 \neq a + b$ and the cube root of $a^3 - b^3 \neq a - b$.

More examples :

(i)
$$\sqrt[3]{24 \times 45 \times 25} = \sqrt[3]{(2 \times 2 \times 2 \times 3) \times (3 \times 3 \times 5) \times (5 \times 5)}$$

= $\sqrt[3]{(2 \times 2 \times 2) \times (3 \times 3 \times 3) \times (5 \times 5 \times 5)}$
= $2 \times 3 \times 5 = 30$

(ii)
$$\sqrt[3]{\frac{50 \times 36 \times 75}{1715}} = \sqrt[3]{\frac{(5 \times 5 \times 2) \times (2 \times 2 \times 3 \times 3) \times (3 \times 5 \times 5)}{5 \times 7 \times 7 \times 7}}$$
$$= \sqrt[3]{\frac{(5 \times 5 \times 5) \times (2 \times 2 \times 2) \times (3 \times 3 \times 3) \times 5}{5 \times (7 \times 7 \times 7)}}$$
$$= \frac{5 \times 2 \times 3}{7} = \frac{30}{7} = 4\frac{2}{7}$$

EXERCISE 7(F)

1. Fill in the blanks:

The cube of 5 is 5^x , then $x = \dots$ (ii) The cube of y is 64, then $y = \dots$

(iii) If $x^3 = 125$, then x = (iv) If $a^a = 27$, then a =

(v) If cube of 0.5 is 0.125, then cube root of 0.125 =

Find the cube root of: 2.

(i) 1

(ii) 343 (iii) 512

(iv) 3375

Find the cube root of: 3.

(ii) -125

(iii) -216

(iv) -512

Find the cube root of: 4.

(ii) $3\frac{3}{8}$

(iii) $2\frac{10}{27}$

(iv) $-\frac{8}{27}$

5. Find the cube root of:

(i) 0.125

(ii) 0.064

(iii) 0.001

(iv) 3.375

(v) - 0.008 (vi) - 0.064

Find the cube root of: 6.

(i) 5^6

(ii) 3¹⁵

(iii) $2^9 \times 3^{12}$ (iv) $4^6 \times 3^9 \times 2^{12}$

Revision Exercise (Chapter 7) -

Fill in the blanks:

(i) $5^{\circ} = \dots$

(ii) $(-5)^{\circ} = \dots$ (iii) $-5^{\circ} = \dots$ (iv) $5^{1} = \dots$

(v) $(-5)^1 = \dots$ (vi) $-5^1 = \dots$ (vii) $5^2 = \dots$ (viii) $(-5)^2 = \dots$

(ix) $-5^2 = \dots$ (x) $5^3 = \dots$ (xi) $(-5)^3 = \dots$ (xii) $-5^3 = \dots$

State true or false: 2.

(i) $2^8 =$ a positive number (ii) $-2^8 =$ a positive number

(iii) $(-2)^8 = a$ negative number

(iv) $2^5 = a$ negative number

(v) $-2^5 = a$ negative number

(vi) $(-2)^5$ = a positive number

Verify that: 3.

(i) $5^2 - 3^2$ and 4^2 are equal.

(ii) $10^2 - 8^2$ and 6^2 are equal.

(iii) $12^2 + 5^2$ and 13^2 are equal.

Hari planted 324 plants in such a way that there were as many rows of plants as there 4. were number of columns. Find the number of rows and columns.

Evaluate: 5.

(i) $\sqrt{64} - \sqrt[3]{64}$ (ii) $\sqrt[3]{125} + \sqrt{81}$

(iii) $\sqrt[3]{27} - \sqrt{49} + \sqrt[3]{216}$

(i) Write the number whose cube root is 0.6. 6.

(ii) Write the number whose cube root is −0.6.

Evaluate: 7.

(i) $8^0 \times 3^2 + 2^3 \times 5$

(ii) $5^2 - 9^2 + 3^3 \times 12^0 \times 2^2$

(iii) $8^2 \times 6^0 + 2^3 \times 3^2$

(iv) $6^2 \times 10^0 - (-5)^0 + 4$

Evaluate: 8.

(i) $\sqrt{3} + \sqrt{169}$

(ii) $\sqrt{9} - \sqrt{25}$

(iii) $\sqrt{7} + \sqrt{81}$